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Abstract: We develop a simple treatment of a metamaterial perfect
absorber (MPA) based on grating theory. We analytically prove that the
condition of MPA requires the existence of two currents, which are nearly
out of phase and have almost identical amplitude, akin to a magnetic dipole.
Furthermore, we show that non-zero-order Bragg modes within the MPA
may consume electromagnetic energy significantly.
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1. Introduction

The experimental demonstration of near-unity absorption in ultra-thin metal-dielectric-metal
metamaterial structures [1] opens many potential applications in sensing, detection, stealth
technology, photovoltaics, and thermovoltaics [2–14]. The underlying mechanisms of the so-
called metamaterial perfect absorber (MPA) have been addressed using effective medium the-
ory [1, 15–17], which approximates the whole metamaterial structure as a homogeneous slab
with an effective bulk permittivity and permeability. It was found that the retrieved effective
permeability can be described by a Lorentzian function around the designed frequency, indi-
cating the appearance of a magnetic resonance [16]. This observation was further supported
by full-wave simulations which showed the currents in the two metallic layers form a circu-
lating current loop [17]. More recently, an interference-based theory of the MPA has been
proposed [18, 19]. By approximating thin planar metallic layers as homogeneous impedance-
tuned interfaces between their boundary media [20], the near-zero reflection and transmission
can be obtained through the interference and superposition of the multiple reflections and trans-
missions [21, 22]. In agreement with the previous numerical observations, the currents in the
two metallic layers predicted by this theory have almost equal amplitude and are nearly out-of-
phase.

According to the grating theory [23], the electric field inside a MPA can be expanded as a
superposition of Bragg waves. On the other hand, since both theoretical approaches mentioned
above disregard the periodic nature of the metamaterial structure, they thereby restrict to zero-
order Bragg waves. In this paper we go beyond this approximation by including all orders of
Bragg waves inside the MPA. We analytically show that the condition of MPA requires the ex-
istence of two currents within the metamaterial, which are nearly out of phase and have almost
identical amplitude. Furthermore, using a combination of analytical and numerical arguments,
we show that non-zero-order Bragg waves within the MPA consume electromagnetic energy.
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2. Grating theory for the metamaterial perfect absorber

Let us consider a metamaterial membrane, surrounded by vacuum, which is periodic in the
xy plane. For simplicity, we assume its meta-atoms are arranged in a rectangle lattice with
primitive lattice vectors dxex and dyey. Here dx and dy are the corresponding lattice con-
stants. We further assume that the external illumination is a plane wave propagating along
the z direction with a wave vector ki. Under this external excitation polarization currents,
J(r,ω) = −iωε0[ε(r,ω)− 1]E(r,ω), will appear inside the metamaterial. Here ε(r,ω) is the
permittivity of the metamaterial, a periodic function of r. Using the free space Green’s function,
we can express the scattered field in terms of the current

E(r′,ω) = ∑
mn

Emn(r′,ω) = ∑
mn

−πZ0eikmn·r′

dxdyλκmn

∫
drJmn,⊥(r,ω)e−ikmn·r, (1)

where the integration is performed over one unit cell, m and n are integers, Z0 =
√

μ0/ε0

is the free-space intrinsic impedance, λ is the excitation wavelength, and k0 = 2π/λ is the
free-space wave number. The wave vector kmn is defined as kmn = ki

‖ − gmn ± κmnez with

κmn =
√

k2
0 −|kmn,‖|2, where gmn = (2πm/dx)ex +(2πn/dy)ey are the reciprocal wave vectors,

and ki
‖ is the projection of the incident wave vector onto the xy plane. Here the positive sign

corresponds to forward scattering (propagating along the positive z direction), and the negative
sign corresponds to backward scattering (propagating along the negative z direction). More-
over, Jmn,⊥ = J−kmn(kmn · J)/k2

0 = −iωε0[ε(r)− 1]
[
E−kmn(kmn ·E)/k2

0

]
. It is important to

emphasize that Jmn,⊥ contains information of all Bragg modes through the total electric field E.
Under certain circumstances κmn is imaginary except for m = n = 0, so that only the zero

order waves can survive in the far-field zone, e.g. at normal incidence and for λ bigger than the
lattice constants. The forward wave is then given by

E f
00(r

′,ω) =
−πZ0

dxdyλki
z
eiki·r′

∫
drJ00,⊥(r,ω)e−iki·r. (2)

The backward wave bears a similar expression except that ki is replaced with ki
‖ − ki

zez. This
equation suggests that the tangential component of the incident wave vector is conserved.

2.1. Role of magnetic dipole

We now apply these equations to a metamaterial perfect absorber. We use a typical MPA pro-
posed in Ref. [16] (depicted schematically in Fig. 1), which consists of three thin layers. The
first layer is a perforated metallic membrane which is referred to as the cross layer, the second
layer, called the spacer layer, is filled with a homogeneous dielectric medium with weak ab-
sorption, and the last layer is generally a metallic ground plane. Furthermore, the meta-atoms
of the cross layer are arranged periodically in a square lattice. The whole structure possesses
both x and y mirror symmetries. Under normal incidence Ei = eik0z′ex, by symmetry Ex is an
even function of x, while Ey and Ez are odd functions of x. Furthermore, the lattice constant d is
smaller than the incident wavelength, so that only the zero-order waves survive in the far field.
The forward and backward scattered fields in the far-field zone are hence given by

E f
00(r

′,ω) =−Z0ex

2
eik0z′

∫ h/2

−h/2
g(z,ω)e−ik0zdz, (3)

Eb
00(r

′,ω) =−Z0ex

2
e−ik0z′

∫ h/2

−h/2
g(z,ω)eik0zdz. (4)
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Fig. 1. Reflection and absorption spectra of the metamaterial perfect absorber under normal
incidence. The inset shows the geometry of the metamaterial. The metallic cross consists
of two 0.4× 1.7 metallic bars. The thicknesses of the cross, spacer and ground layer are
0.1, 0.09 and 0.2, respectively. The total thickness h equals 0.39, and the lattice constant
d = 2. All dimensions are in micrometers.

Here h is the thickness of the MPA, and the integral function

g(z,ω) =
1
d2

∫ d/2

−d/2

∫ d/2

−d/2
Jx(x,y,z,ω)dxdy (5)

stands for the current density at a specific z plane. Note that although the forward and backward
waves in the far field are determined by the zero-order Bragg mode, the current Jx however
contains contributions from all orders of Bragg waves within the structure since the quantity
J00,⊥ defined in Eq. (2) equals to J⊥, the transverse component of the total current inside the

metamaterial. As a direct result, the reflected wave is Eb
00, and the transmitted wave is Ei+E f

00.
A metamaterial with unity absorption neither reflects nor transmits the incident EM wave to

the far field, which is equivalent to requiring
∫ h/2

−h/2
g(z)eik0zdz = 0, (6)

∫ h/2

−h/2
g(z)e−ik0zdz =

2
Z0

. (7)

To simplify the notation, we dropped the ω dependence of g here and in the following. The
first equation imposes no reflection, and the second one leads to zero transmission. Because
the thickness h is much smaller than λ , we can employ multipolar analysis by expanding eik0z

as 1+ ik0z+ · · · . The leading order gives the electric dipole and the first order of k0z gives
the combination of magnetic dipole and electric quadrupole. Supposing these three multipoles
dominate the above two integrations, we arrive at

∫ h/2

−h/2
gR(z)dz =

1
Z0

,
∫ h/2

−h/2
gI(z)dz = 0, (8)

as well as ∫ h/2

−h/2
gR(z)zdz = 0, k0

∫ h/2

−h/2
gI(z)zdz =

1
Z0

, (9)
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where gR and gI are the real and imaginary parts of g, respectively. Eqs. (8) immediately suggest
that there exists an electric dipole moment with a value of 1/Z0, and Eqs. (9) imply that the MPA
possesses a magnetic dipole as well as an electric quadrupole, and their sum equals i/Z0 (see
equation 9.31 of Ref. [24]). Moreover, as suggested by Eqs. (6) and (7), these three multipoles
are destructive along the reflected direction, which leads to zero reflectance.

It is important to notice that the dielectric layer generally has a permittivity εd which is very
different from the permittivity εm of the metallic layers. For instance, the ratio (εm−1)/(εd −1)
of the MPA studied below is about 1428ei0.94π when λ = 5.93 μm. Since Ex is continuous
crossing the spacer-ground interface, the polarization current Jx is strongly concentrated inside
the metallic layers. We therefore can neglect the polarization current within the dielectric layer.
Denoting the total current of the cross and ground layer as Gc and Gg, respectively, Eqs. (8)
suggest

Z0 ×Re(Gc +Gg) = 1, Im(Gc +Gg) = 0. (10)

In addition, Eqs. (9) imply |gI | is much bigger than |gR| because k0|z| � 1. We therefore expect
that Gc and Gg are nearly purely imaginary. In other words, the currents in the two metallic
layers are nearly out of phase and have almost identical amplitude. This fact, here proved ana-
lytically, was reported in earlier numerical simulations [1, 14–17, 25]. It is worth emphasizing
that our proof does not require the computation of the current Jx, which is usually carried out
by full-wave simulations.

To support the statements above, we will now perform full-wave simulations of a MPA whose
geometrical and optical parameters are almost identical to the ones used in Ref. [16]. The
geometrical parameters are specified in Fig. 1. The permittivity of the dielectric is described
by a Lorentz model [26], εd(ω) = ε∞

[
1+ω2

p/(ω2
0 −ω2 − iωγ)

]
with ε∞ = 2.44, ωp = 93.77

THz, γ = 173.73 THz and ω0 = 3.1 THz, which results in a permittivity εd ≈ 2.28+ 0.091i,
approximately constant in the relevant frequency regime, and almost identical to the one used
in Ref. [16]. It should be emphasized that this specific Lorentz model for εd does not alter
the underlying physics of MPA. The permittivity of the metal is described by a Drude model,
εm(ω) = 1− ω2

pm/(ω2 + iωγm), with ωpm = 1.37× 104 THz and γm = 40.8 THz. Using a
finite-difference time-domain method [27], where the size of spatial grid cell is fixed at 5 nm,
we calculate the linear spectra at normal incidence and plot the results in Fig. 1. Around a
wavelength of 5.93 μm, the absorption is found to be nearly 100%. Note that this wavelength
is bigger than the lattice constant d = 2 μm, so that only zero-order Bragg wave propagates
to the far field. We further calculate the current function g(z) at this wavelength and plot the
result in Fig. 2(a). To check our numerical results, we computed the integrations in Eqs. (8) and
(9), and verified that they are nearly identically satisfied. As discussed above, we find that the
polarization current are strongly localized inside the two metallic layers, and a phase jump of
0.94π appears at the spacer-ground interface. Furthermore, we obtain GcZ0 = (−0.15−6.77i)
and GgZ0 = (1.1+6.78i), in perfect agreement with the discussions above.

2.2. Role of non-zero-order Bragg waves

Next we consider the dissipation of the electromagnetic energy within the MPA. According
to Poynting’s theorem, the energy absorption can be described by J ·E [24]. Consequently we
define

η(z) =
∫ ∫

Im(ε)|E(x,y,z)|2dxdy∫ ∫ ∫
Im(ε)|E(x,y,z)|2dxdydz

(11)

to measure the relative contribution from a specific z plane. Here ε = ε(r,ω) describes the
permittivity of the whole MPA structure. In general, the electric field intensity inside a meta-
material is highly inhomogeneous, which is an indication of the appearance of high-order Bragg
waves, since the zero-order mode only gives a homogeneous field distribution. Therefore one
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Fig. 2. (a) Amplitude and phase of the function g(z), and (b) the function η(z), when
λ = 5.93μm. The dielectric layer is highlighted.

can conclude that high-order Bragg waves definitely consume electromagnetic energy inside
any nanostructure, in particular a MPA.

We numerically calculate η for the structure shown in Fig. 1, and plot the result in Fig. 2(b).
Under normal incidence, the two approximate theories proposed in Ref. [1] and Ref. [19] con-
sider only the zero-order mode (m = n = 0), which is a plane wave propagating along the z
direction. The corresponding EM field of the m = n = 0 mode is parallel to the interface and
must be continuous across the spacer-ground interface. If only this mode consumes electro-
magnetic energy, we expect that η of the spacer layer is much smaller than that of the ground
layer because Im(εm)/Im(εd) ≈ 3000, which however does not agree with our full-wave nu-
merical result (a similar calculation was reported in Ref. [16]). This disagreement implies that
higher-order Bragg waves (contained in full-wave simulation but omitted in effective medium
theory) contribute significantly to the dissipation of energy within the metamaterial. Indeed,
we find numerically that the ratio of |Ez/E| inside the spacer layer ranges from 0.84 to nearly
1.0, suggesting that non-zero-order waves have a dominant contribution to the total field in the
spacer region. As discussed in the previous paragraph, one can alternatively infer the existence
of high-order Bragg waves from the highly localized electric field distribution inside the MPA,
which is shown in figure 4 of Ref. [16].

3. Conclusions

To sum up, we studied the metamaterial perfect absorber in the framework of grating theory.
We proved analytically that there always exists one circulating current loop (akin to a magnetic
dipole), together with an electric dipole as well as an electric quadrupole. We further showed
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that non-zero-order Bragg waves may contribute significantly to the dissipation of the elec-
tromagnetic energy inside the perfect absorber. Such an understanding of the process in the
microscopic scale is important in exploring potential applications of metamaterial absorbers.
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